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Abstract

Sudden perturbations of a large amplitude occur frequently in macroeconomic and  nan-
cial time series. A usual practice is to test linearity against a permanent structural change.
However, changes can also be captured by nonlinear stationary models such that Threshold
and Markov-switching models. In this paper, we show that tests designed for a threshold al-
ternative have also power against parameter instability originating from Structural Change or
Markov-switching models. On the other hand, it is shown that tests for structural change have
no power if the data are generated by a Markov-switching or Threshold model. Therefore, it
appears that testing the null of parameter stability against a threshold alternative is a robust way
to detect parameter instability in economic and  nancial time series. A Monte Carlo analysis
based on several models studied in the literature illustrates how the tests perform in practice.
c© 2002 Elsevier Science B.V. All rights reserved.

JEL classi#cation: C12; C22

Keywords: Asymptotic theory; Hypothesis testing; Nonlinear models; Nuisance parameter

1. Introduction

Economic time series often exhibit sudden changes of a large amplitude, as a result of
a technological change, a change of policy, a supply shock, a  nancial crash or extreme
events such as a war. Linear models such as Gaussian autoregressive moving-average
(ARMA) models fail to exhibit such dramatic changes. Therefore, several nonlinear
dynamic models have been recently proposed. One can oppose the Structural Change
model where the change is permanent to models subject to cycles (Markov-switching
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and Threshold models). We consider autoregressive versions of these three models:

yt = (�0 + �1yt−1 + · · ·+ �lyt−l) + (�∗0 + �
∗
1yt−1 + · · ·+ �∗l yt−l)�tT + �t ;

�t ∼ i:i:d:(0; 
2); (1)

where �tT is an indicator variable that takes two values, 0 (low regime) and 1 (high
regime) whose speci cation varies across models. The Structural Change model de-
noted SCA (Andrews, 1993) exhibits a jump at an exogenous date. �tT = 0 before
a change point and �tT = 1 afterward. In the Markov-switching model denoted MSA
(Hamilton, 1989, 1994), changes are driven by on unobservable exogenous Markov
chain, St . For this model, �tT = St . The Threshold model denoted TAR (Tong, 1990)
induces asymmetric, periodic behavior including an amplitude–frequency dependence.
In this case, �tT = 1 if yt−d was less than a threshold value and �tT = 0 if yt−d was
greater than the threshold. Contrary to Gaussian ARMA models, these three models
are irreversible (Tong, 1990, pp. 12, 197). This is an attractive feature since most  -
nancial and macroeconomic time series are characterized by an asymmetry between the
upward and downward movements. These nonlinear models have been widely applied
in economics. 1

Policy debates depend on whether a macroeconomic or  nancial time series is best
characterized by a linear or a nonlinear model. Using a linear model with  xed param-
eters to describe a macroeconomic time series may lead to a wrong quantitative assess-
ment of policy eGects if structural changes occur during the period of study. Therefore,
many papers concerned with macroeconomic or  nancial modelling have focused on
testing for linearity. Often, econometricians test linearity by testing structural change
in the mean or slope parameters. However, we know since Andrews (1993, p. 826)
that such tests will have no power if the true alternative is a stationary model. Our
paper illustrates that the supWald, supLM and supLR tests do not have power against
two particularly relevant alternatives which are the Threshold and Markov switching
models. Moreover, we show that when the DGP is either SCA or MSA, the test de-
signed for a threshold alternative has asymptotic power equal to one. It has an important
implication, namely that in large samples, the TAR model detects the presence of a
shift whatever its nature is. Therefore, this test could be used as pre-test to detect pa-
rameter instability. We note, however, that this test has power against local alternative
in T 1=4 but not T 1=2; therefore, it will not be able to detect small changes.
In the three models under consideration, testing for parameter stability is problematic

because of the presence of nuisance parameters which are not identi ed under the null
hypothesis. These nuisance parameters are the following: (i) the timing of the change
in the Structural Change model, (ii) the transition probabilities in the Markov-switching
model, (iii) the value of the threshold in the Threshold model. Testing procedures of
these models have been provided by Davies (1987), Andrews (1993), Andrews and
Ploberger (1994), and Hansen (1996) among others. We focus our attention on sup tests

1 See Hansen (1996), Potter (1995), Koop and Potter (1999, 2001) for the Threshold model, Cecchetti et
al. (1990), Garcia and Perron (1996), Hamilton (1989), Kaminsky (1993), and Raymond and Rich (1997)
for the Markov-switching model, Banerjee et al. (1992), Perron (1990), Stock and Watson (1996) for the
Structural Change model, among others.
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initially proposed by Davies. We provide an analytical expression of the asymptotic
distributions of the tests under misspeci cation and show how it is aGected by the
value of the parameters of the DGP. The focus of our paper is closely related to that
of Koop and Potter (1999, 2001). They investigate by Monte Carlo how their linearity
tests behave against another alternative than that for which it was designed; they also
point out the diJculty to discriminate between TAR and MSA. However, their tests
are Bayesian and diGer from ours that are classical. Bayesian tests allow them to treat
the MSA case that we are not able to address here. 2

The paper is organized as follows: Section 2 presents the models and describes
the testing method. Section 3 derives analytically the asymptotic distribution of the
tests when the models are misspeci ed. Section 4 presents Monte Carlo experiments.
Section 5 concludes. All the technical proofs are in the appendix.
Throughout the paper, the symbol ⇒ denotes weak convergence of probability mea-

sures with respect to the uniform metric, d→ denotes convergence in distribution and
P→ denotes convergence in probability.

2. Estimation and testing method

In this section, we present the null hypothesis of interest and the test statistics
considered in this paper.

2.1. Null hypothesis

Data are generated according to Model (1) de ned in the Introduction. The number
of lags l is  xed a priori. The observations are given by {yt−m+1; yt−m; : : : yT} where
m = max(d; l) and T is the sampling period. �tT depends on some unknown vector
of parameters �∈�. The unknown parameters of interest are the components of � =
(�∗

′
; �′; 
)′ ∈� ⊂ Rl+1×Rl+1×R∗

+ where �=(�0; : : : ; �l)′ and �∗=(�∗0 ; : : : ; �
∗
l )

′. The
null hypothesis of parameter stability is H0: �∗ =0. Under H0; yt does not depend on
�tT , therefore � is a nuisance parameter that is not identi ed under H0. The alternative
hypothesis of interest is H1: �∗ 
=0; �∈�. An important point is that under H0, the
three models are the same. Eq. (1) becomes an autoregressive AR(l) model. The basic
assumption on the distribution of the error is the following:

Assumption 1. {�t} is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with mean zero and  nite fourth moment; and with absolutely continuous
distribution. {�t} is independent of {yt−1; yt−2:::}.

Note that if �t are i.i.d normally distributed N(0; 
2), Assumption 1 is satis ed. The
following assumption guarantees stationarity of the process under H0:

2 Some of the usual assumptions are not satis ed and we are not able to derive the asymptotic distribution
of the stability test against a Markov-switching alternative.
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Assumption 2. The roots of the polynomial 1 − �1z − · · · − �lzl are outside the
unit circle.

Under Assumptions 1 and 2 and if H0 is satis ed, the series {yt} is geometri-
cally �-mixing (Doukhan, 1994, p. 99). This means that the law of large numbers
(LLN) and functional central limit theorem (CLT) apply. For a de nition of �-mixing
(also called absolute regularity) and an example of application of this property, see
Hansen (1996).

2.2. Testing

The null hypothesis of interest can be written as H0: A� = 0, where A is a suitable
matrix. Denote �0 = (�∗0

′; �′0; 

2
0)

′ the true value of �. Let LRT (�) denote the standard
likelihood ratio test statistic to test H0 against H1 given the parameter �. When the
value of the nuisance parameter is known a priori, LRT (�) converges to a chi-square
distribution. However, when the nuisance parameter is unknown, this statistic fails to
be a chi-square. To handle this problem, Davies (1987) proposed a supLR test, the
maximum of the LR test with respect to the nuisance parameters over a restricted
interval �. Later, Andrews and Ploberger (1994) proposed a class of tests denoted
ExpLR. These tests are constructed to be optimal if the amplitude of the change follows
a speci c normal distribution. On the other hand, Andrews and Ploberger (1995) show
that the supLR test is optimal for a uniform prior. Since the sup tests are the most
widely applied, we shall focus on the supLR test and sup versions of speci cation
robust Wald and Lagrange Multiplier tests proposed by White (1982).
Let us de ne QT (�; �) as the mean log-likelihood function, �̂(�) as the maximum

likelihood estimator of � under H1(�), and �̃ the restricted estimate of � under H0. Our
statistics are based on the following matrices:

ST (�; �) = 9
9� QT (�; �);

MT (�; �) =− 92
9�9�′ QT (�; �);

�T (�; �) =MT (�; �)−1VT (�; �)MT (�; �)−1,

where VT (�; �) is an estimate of Var(
√
TST (�; �)).

The pointwise likelihood ratio test statistics is given by

LRT (�) = 2T [QT (�̂(�); �)− QT (�̃)]:

The pointwise Wald statistics is

WT (�) = T �̂(�)′A′[A�T (�̂(�); �)A′]−1A�̂(�):

The pointwise Lagrange multiplier statistics is

LMT (�) = TST (�̃; �)′MT (�̃; �)−1A′[A�T (�̃; �)A′]−1AMT (�̃; �)−1ST (�̃; �):
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In the following, we shall consider the following sup-tests:

SupWT = sup
�∈�
WT (�); SupLMT = sup

�∈�
LMT (�); SupLRT = sup

�∈�
LRT (�):

The choice of � is delicate. It must be bounded away from the maximum values of �,
otherwise, the sup statistics will diverge. Note that � is a subset of R in the case of
a SCA and TAR and is a subset of R2 in the case of a MSA. The choice of � will
be discussed below for each speci c model.

Assumption 3. �0 is interior point of �0; where �0 is a compact subset of � that
contains neighborhoods of �0.

Assumption 3 is a standard assumption in the literature, see for instance Andrews and
Ploberger (1994). Other assumptions, that are typically required to derive properties
of the maximum likelihood estimators, are not stated here because they are satis ed
by construction of the models, for instance diGerentiability of the likelihood with
respect to �.

2.3. Structural Change Autoregressive model (SCA)

The SCA is an autoregressive model where all the coeJcients jump at some unknown
timing, T�, with �∈ (0; 1).

yt = y′t�+ y′t�
∗I{t ¿ [T�]}+ �t ;

�t ∼ i:i:d:(0; 
21) (2)

where yt = (1; yt−1; yt−2; : : : ; yt−l)′; � = (�0; : : : ; �l)′ and �∗ = (�∗0 ; : : : ; �
∗
l )

′. I denotes
the indicator function and [a] denotes the greatest integer value smaller than a. The
proportion, �, of observations before the break-point is supposed to be constant. This
can be valid only if the interval between observations approaches zero, this corresponds
to a  ner and  ner discretization. In that sense, the asymptotic in this model diGers
from the two others.
The null hypothesis of interest is H0: �∗ = 0 and the alternative hypothesis is H1:

�∗ 
=0. � is a nuisance parameter that is not identi ed under H0. The following as-
sumption is supposed to hold:

Assumption 4. The roots of the polynomial 1−(�1+�∗1 )z−· · ·−(�l+�∗l )z
l are outside

the unit circle.

Under Assumptions 2 and 4, the SCA is piecewise stationary because {yt; t6 [T�]}
follows a stationary AR(l) process and {yt; t ¿ [T�]} follows another stationary
AR(l). This property is used to obtain the LLN and central limit theorem (CLT)
for triangular arrays of temporally dependent random variables. However, it is clear
that the process as a whole is not even mean stationary.
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Without any extra assumptions, the SCA can be estimated by OLS. The test statistics
will be based on a Gaussian likelihood. The following result was proven independently
by Andrews (1993) and Davis et al. (1995).

Proposition 1. Assume Assumptions 1–4 hold and �t is normally distributed. Then
under H0: �∗ = 0:

SupWT;SupLMT; SupLRT
d→ sup
�∈ 

(Bl+1(�)− �Bl+1(1))′(Bl+1(�)− �Bl+1(1))=[�(1− �)] (3)

where Bl+1 is a l + 1-vector of independent Brownian motions on [0; 1]
restricted to  .

Remark that for �  xed, the Brownian bridge B(�) − �B(1) is simply a normal
random variable with mean zero and variance �(1−�). As a process, LRT (�) converges
to the sum of independent squared Brownian bridges. Therefore, for �  xed, we obtain
the usual result that the LRT test statistics converges to a chi-square distribution with
l+1 degrees of freedom. The set  must exclude values of � such as �=0 and �=1
where the information matrix is singular. Andrews (1993) has tabulated the critical
values for various intervals  , for l=0; 1; : : : ; 19, and test level �=1%; 5%; 10%. The
normality is needed to have asymptotic equivalence between the three tests because the
test sup�∈ LRT (�) is not robust to misspeci cation. Its asymptotic distribution under
more general assumptions can be found in Hansen (1991).
Assume l= 0. Under H0: �∗ = 0, Eq. (3) simpli es to:

sup
�∈ 

WT (�); sup
�∈ 

LMT (�); sup
�∈ 

LRT (�)
d→ sup
�∈ 

(B(�)− �B(1))2
�(1− �) :

2.4. Markov-Switching Autoregressive model (MSA)

The MSA is the counterpart of the SCA where the change of regime depends on an
exogenous unobservable Markov chain.

yt = y′t� + y′t�
∗St + !t;

!t ∼ i:i:d:N(0; 
22) (4)

where � = (�0 · · · �l)′, and �∗ = (�∗0 · · · �∗l )′: St is a two-state Markov chain with un-
known transition probabilities p = P(St = 1|St−1 = 1) and q = P(St = 0|St−1 = 0),
p∈ (0; 1) and q∈ (0; 1). Hamilton (1993, p. 235) points out that the speci cation (4)
allows the possibility of a permanent change as a special case if p= 1; 0¡q¡ 1 or
q=1; 0¡p¡ 1. So that the SCA is a particular case of the MSA. For identi ability
purpose, when we refer to an MSA, it is implicit that p and q are away from the
boundaries. Moreover, the labels of states and submodels are interchangeable. To guar-
antee identi ability, it is assumed that �∗0¿ 0. However, this constraint is not imposed
in the estimation.
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The parameters � = (�∗′; �′; 
2)′ are estimated by maximum likelihood estimation
(MLE). Since St is not observable, inference about the state is done applying an
EM-algorithm developed by Hamilton (1989). The assumption of normality is cru-
cial. Since the model is nonlinear, the ML estimators may fail to be consistent if the
normality is not satis ed.
The null hypothesis of interest is H0: �∗=0. The alternative is H1: �∗ 
=0. Under the

null hypothesis, the transition probabilities p and q are not identi ed. However, a more
serious problem occurs since the score functions are identically equal to zero under the
null hypothesis, and thus the information matrix is singular. Under H0; P(St |y1; : : : ; yT )
is, indeed, equal to P(St = 1) that is constant. Hence, the general theory breaks down
(see Garcia, 1998; Lee and Chesher, 1986). Nevertheless, Garcia (1998) derives the
distribution of the supLR test and assesses its validity by a Monte Carlo analysis.
To make sure that the process behaves properly under the alternative, the following
assumption is needed:

Assumption 5. The MSA is stationary and geometrically �-mixing.

In a recent paper, Yao and Attali (2000) give a suJcient condition for geometric
ergodicity of MSA. Geometric ergodicity implies that the stationary distribution exists
and that if y0 is drawn from this distribution, then {yt} is also stationary and geometri-
cally �-mixing. If l=1, a suJcient condition is simply ' ln |�1|+(1−') ln |�1+�∗1 |¡ 1,
where ' ≡ P(St=1)=(1−q)=(2−p−q). Note that an explosive root in one regime does
not preclude global strict stationarity. Franck and Zakoian (2001) give suJcient con-
ditions for second-order stationarity of multivariate MSA. They show in particular that
stationarity within regimes is neither necessary nor suJcient for global second-order
stationarity. For moments of MSA, see also Timmermann (2000).
When l= 0, Garcia (1998) shows that under H0: �∗ = 0:

sup
(p;q)∈(2

LRT (p; q)
d→ sup
'∈)

(B(')− 'B(1))2
'(1− ') (5)

with ( being the closed interval where p and q are supposed to lie. ) is the closed
interval where '(p; q)=(1−q)=(2−p−q) belongs. The supLR test is likely to converge
to the distribution given in (3) in the case of a general MSA but no formal proof
is available.

2.5. Threshold Autoregressive model (TAR)

We consider a Self-Exciting Threshold Autoregressive model, which has been studied
extensively by Tong (1990).

yt = y′t *+ y′t *
∗I{yt−d6 r}+ ut ;

ut ∼ i:i:d: (0; 
23); (6)

where *=(*0; : : : ; *l)′; *∗=(*∗0 ; : : : ; *
∗
l )

′. The null hypothesis of interest is H0: *∗=0. The
alternative is H1: *∗ 
=0. Both r and d are nuisance parameters that are not identi ed
under the null. Chan (1990) gives a test of this hypothesis for a  xed d and an unknown
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r, Hansen (1996) considers both r and d unknown. Since the issue of interest is the
behavior of the test statistic when the model is misspeci ed, we can assume d known a
priori and r unknown. By assumption, r is such that -=P(yt6 r) belongs to (0; 1). As
for the SCA, the model is estimated by OLS and tests are constructed using Gaussian
likelihood. The following assumption ensures the geometric ergodicity of the process
and the existence of a (strict sense) stationary distribution:

Assumption 6. max(
∑l
i=1 |*i|;

∑l
i=1 |*i + *∗i |)¡ 1.

This result has been proved  rst by Chan and Tong (1985) for d6 l and by
Bhattacharya and Lee (1995) for d¿l.
Now, we study in detail the Threshold nonautoregressive model (case l= 0 and ut

normal). Its stationary distribution is a mixture of normal distributions:

f(yt) = - exp− (yt − *− *∗)2
2
23

+ (1− -) exp− (yt − *)2
2
23

;

where -= P(yt6 r) =0(r − *=
3)=[1−0(r − *− *∗=
3) +0(r − *=
3)] and 0 is the
c.d.f. of N(0; 1). No restriction on d, * and *∗ is necessary to obtain the stationarity
of {yt}. We also have calculated the mean and the variance of yt

E(yt) ≡ m= *+ -*∗;

V (yt) ≡ 22 = 
23 + -(1− -)*∗2:

Lemma 2. Assume that yt is generated by (6) with l= 0. Let Xt denote I{ytd6 r}.
Then {Xt} is a Markov chain.

Lemma 2 is a straightforward generalization of a result by Gourieroux (1997, p. 13).
It points out the close relationship between a TAR with d=1 and an MSA. Note that
the Threshold model with d = 1 is not really a Markov-switching model because the
Markov chain {Xt} is not exogenous. Moreover, Threshold model (6) with l= 0 and
d=1 is a Markov process (conditionally on yt−1, yt does not depend on yt−2; yt−3; : : :)
while a Markov-switching model (4) with l=0 is not Markov (conditionally on yt−1,
yt still depends on all past values of the series through St).
We wish to test the null hypothesis H0: *∗ = 0 against H1: *∗ 
=0. The threshold

r is assumed to lie inside an interval R. Chan (1990) and Chan and Tong (1990)
show that

sup
r∈R
WT (r); sup

r∈R
LMT (r); sup

r∈R
LRT (r)

d→ sup
-∈�

(B(-)− -B(1))2
-(1− -) ;

where the expression of -(r) = E(I{yt−d6 r}) is given above and �∈ (0; 1) is the
image of R under the map -.
Note that under H0, the distributions of the test statistics are asymptotically equivalent

for the three nonautoregressive models as mentioned by Garcia (1998, Appendix 3).
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In the case of a general TAR model, the asymptotic distribution of the test statistic
depends on the unknown parameters of the model (see Chan, 1990, Theorem 2.3)
which makes the computation of the critical values more diJcult. To handle such cases,
Garcia (1998) proposes an algorithm to simulate chi-square processes and compute the
critical values, on the other hand, Hansen (1996) develops techniques to determine the
p-values via simulations.

3. Asymptotic distribution of statistics under model misspeci cation

Most often, econometricians test linearity against a speci c alternative they believe
in, but ultimately they have to determine which model  ts the data best via tests
for parameter stability. Hence to make the right decision, it is essential to know the
asymptotic behavior of these test statistics if the model is misspeci ed. In the following,
we shall assume that the data are generated by a model, say M1, but one estimates
another model, say M2, which is therefore misspeci ed. A test at level � is applied
as if the model were correctly speci ed, that is, the critical region is [l�;∞) given by
Andrews’ tables. In order to calculate the probability of the critical region when the
model is misspeci ed, we have to determine  rst the asymptotic distribution under the
true model of the estimator �̂ and then of the statistics de ned in the previous section.
The criterion, which has been maximized, is a quasi-likelihood function QT (�; �). The
pseudo-maximum likelihood estimate:

�̂(�) = argmax
�∈�

QT (�; �)

converges asymptotically to a limit denoted �a that depends not only on � but
also on the true value of the parameters associated with the DGP M1 (including
the nuisance parameters in that model). From now on, �0 is a subset of � that
contains neighborhoods of �a; �0 will be assumed to satisfy the compactness of
Assumption 3.

3.1. Test for an SCA when the data are generated by a TAR or MSA

Here a test of parameter stability is performed as if the model were SCA. How-
ever, the data are generated either by a TAR or MSA. When testing for the ab-
sence of structural change, the null hypothesis can be rewritten H0: A� = 0, where
�=[�∗′; �′; 
]′, and A=[Il+1|Ol+1|ol+1] with Il+1 is a (l+1)× (l+1) matrix identity,
Ol+1 is a (l + 1) × (l + 1) matrix of zeros, and ol+1 is a (l + 1) − vector of zeros.
De ne

M =
1

2a

E[yty′t] and S = lim
T→∞

V

[
1√
T

T∑
t=1

1

2a
yt{yt − y′t�a}

]
;

where �a and 
2a are the pseudo-true values de ned below.

Assumption 7. E‖yty′t‖2+� ¡∞ for some �¿ 0.
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Assumption 8. M and S are positive de nite.

Assumption 7 imposes the existence of higher order moments.

Proposition 3. Suppose that Assumptions 1; 2; 4–8 hold. When the data are generated
either by a stationary TAR or MSA; the pseudo-maximum likelihood estimators of
the parameters of the SCA satisfy

�̂(�) P→ �a = E[yty′t]
−1E[ytyt];

�̂∗(�) P→ �∗a = 0;


̂2(�) P→
2a = E[{yt − y′t�a}2]:
The sup LM and W statistics satisfy

sup
�∈ 

LMT (�); sup
�∈ 

WT (�)

⇒ sup
�∈ 

(Bl+1(�)− �Bl+1(1))′(Bl+1(�)− �Bl+1(1))=[�(1− �)]:

The sup LR statistic satis#es

sup
�∈ 

LRT (�) ⇒ sup
�∈ 

l+1∑
j=1

cj(�a)
(Bj(�)− �Bj(1))2

�(1− �) ;

where Bj are independent scalar Brownian motions and c1(�a)¿ c2(�a)¿ · · ·¿ cl(�a)
¿ 0 are the eigenvalues of the matrix M−1S.

For � known a priori, the LR test converges to a sum of independent chi-square
processes weighted by the eigenvalues cj (see Foutz and Srivastava, 1977). Again for
� known, our speci cation robust LM and W tests converge to a chi-square of (l+1)
degrees of freedom, see White (1982). For � unknown, we get the counterpart of these
results where independent chi-square random variables are replaced by independent
squared Brownian bridges. The power of the test based on LMT and WT is exactly
equal to the level of the test. In the case of LRT , the power depends on the value of
the parameters.
Let M (�a; �) = limT→∞MT (�a; �) and V (�a; �) = limT→∞ VT (�a; �) where MT and

VT are de ned in Section 2. M (�a; �) and V (�a; �) should not be confused with M
and S. Simple calculations show the following relationship:

[M (�a; �)]11 =−
[

M (1− �)M
(1− �)M (1− �)M

]
and

[V (�a; �)]11 =
[

S (1− �)S
(1− �)S (1− �)S

]
; (7)

where [M (�a; �)]11 and [V (�a; �)]11 are the upper-left blocks of M (�a; �) and V (�a; �)
and correspond to the derivatives with respect to (�′; �∗′)′. Below, we specialize our
results to simple nonautoregressive models.
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3.1.1. The DGP is the Markov-switching model
One tests for the absence of structural change H0: �∗ = 0 in Model (2) with l = 0

when in reality, the data generating process is a two-state Markov-switching one (4)
with l= 0. Recall that '= P(St = 1) = (1− q)=(2− p− q).

Proposition 4. Suppose that the Markov-switching model holds; then
√
T
(
�̂− � − '�∗

�̂∗

)
d→N


( 0

0

)
;
(

22 + �

∗2 '(1− ')(p+ q)
(2− p− q)

)
1
�

− 1
�

− 1
�

1
�(1− �)




 ;


̂21
P→
21a = 
22 + �∗2'(1− '):

Proposition 5. Suppose that the Markov-switching model holds; then

sup
�∈ 

WT (�); sup
�∈ 

LMT (�)
d→ sup
�∈ 

(B(�)− �B(1))2
�(1− �) ;

sup
�∈ 

LRT (�)
d→ sup
�∈ 

(B(�)− �B(1))2
�(1− �)

(

22

21a

+
�∗2'(1− ')(p+ q)

21a(2− p− q)

)
:

The sup LR statistic converges to the same function of a Brownian bridge as in the
correctly speci ed case, multiplied by a coeJcient

K1 =
(

22

21a

+
�∗2'(1− ')(p+ q)

21a(2− p− q)

)

which is greater or less than 1 according to the values of p and q. We have:

1. p+ q¿ 1 ⇒ K1¿ 1,
2. p+ q¡ 1 ⇒ K1¡ 1.

When p + q¡ 1, then the probability of a switch in regime is higher than the
probability to stay in the same regime. The process switches a lot between the two
regimes and therefore appears as a white noise with large variance. In that case, the
probability of rejection is lower than the level of the test. That is to say that the test
does not have any power. When p + q¿ 1, the probability of staying in the same
regime is larger than the probability to switch. Therefore, the probability of rejection
is greater than the level of the test and depends on the parameters �∗, p and q but,
as the pseudo-true value of �̂∗ is equal to zero, the power of the test should be low.

3.1.2. The DGP is the threshold model
Now, the absence of structural change is tested when in fact the model is a Threshold

one (6) with l= 0 and normal error.
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Proposition 6. Suppose that the data are generated by a Threshold model; then

√
T
(
�̂− *− -*∗

�̂∗

)
d→N



(
0
0

)
; K2




1
�

− 1
�

− 1
�

1
�(1− �)




 ;


̂21
P→
21a = 


2
3 + -(1− -)*∗2

with

K2 =



23 + *∗2 -(1− -)

1− 0
(
r − *− *∗

3

)
+ 0

(
r − *

3

) 2*∗

1− 0
(
r − *− *∗

3

)
+ 0

(
r − *

3

)

−
[
-’
(
r − *− *∗

3

)
+ (1− -)’

(
r − *

3

)] ;
where ’ is the probability density function (p.d.f.) of the standard normal distribution.

Note that the expression of K2 is more complicated than K1 because the Markov
chain Xt = I{yt6 r} is correlated with ut whereas St is exogenous and therefore un-
correlated with !t .

Proposition 7. Under the Threshold model; we have

sup
�∈ 

WT (�); sup
�∈ 

LMT (�)
d→ sup
�∈ 

(B(�)− �B(1))2
�(1− �) ;

sup
�∈ 

LRT (�)
d→ sup
�∈ 

K2

21a

(B(�)− �B(1))2
�(1− �) :

The coeJcient K2=
21a is greater or less than 1 according to the values of *∗:

1. *∗¿ 0 ⇒ K2=
21a ¡ 1,
2. *∗¡ 0 ⇒ K2=
21a ¿ 1.

When *∗¿ 0, the process is much more likely to switch back and forth because
when the process is in Regime 1, its mean is greater than in Regime 0 and then yt
is more likely to exceed the threshold value r. As in the Markov-switching model,
a process that switches a lot is likely to be mistaken for a white noise with large
variance. Therefore, the probability to reject is less than the level of the test. When
*∗¡ 0 the process switches less often. Hence, the probability to reject is greater than
the level of the test but the power will remain low.
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Note that the estimator of the expectation of yt is

Ê(yt) = �̂+ �̂
∗(1− �̂):

This coincides (see the score with respect to �) with the empirical mean:

Ê(yt) = Sy:

Hence the misspeci ed Structural Change provides a consistent estimation of the ex-
pectation whatever the correct model is.
When the misspeci ed model is a Structural Change and the true model is a station-

ary one, the only hypothesis making the tested model stationary, that is �∗=0, will be
the one having the highest probability of being chosen. In other words, the test is not
consistent. This lack of power can be very misleading in applications if one does not
investigate other forms of parameter instability. However, one can use these results to
get information about the nature of the switch. Assume one tests the null hypothesis
of absence of structural change. If the statistic is in the critical region, the switch is
certainly a structural change but if the statistic is low, then the model could be either
Threshold or Markov-switching.

3.2. Test for a TAR when the data are generated by an SCA or MSA

The null hypothesis H0: *∗ = 0 is tested as if the data were generated by the TAR
model (6).

Proposition 8. Suppose that Assumptions 1–5 hold. If the DGP is either an SCA with
�∈ (0; 1) or a stationary MSA with p∈ (0; 1); q∈ (0; 1); and such that p+q 
=1; then

sup
r∈R
WT (r); sup

r∈R
LMT (r); sup

r∈R
LRT (r)

P→+∞:

When p+ q= 1; P(St = 1|St−1 = 0) = 1− q= p= P(St = 1|St−1 = 1), the {St} are
independent. In that case, the statistics converge to zero and you would accept H0. In
all other cases, you would reject H0 asymptotically with probability 1. To get some
insights into the behavior of the test statistics under a local alternative, we restrict our
attention to nonautoregressive models.

3.2.1. The DGP is the Structural Change model
We test the hypothesis of parameter stability H0: *∗ = 0 in Threshold model (6)

with l = 0 when, in fact, the true model is Structural Change (2) with l = 0 and
normal error.

Proposition 9. Consider *̂ and *̂∗ the quasi-maximum likelihood estimators obtained
in the Threshold model. When the Structural Change model holds; we have

*̂ P→ *a = �+ �∗(1− �)
1− 0

(
r − �− �∗


1

)

1− �0
(
r − �

1

)
− (1− �)0

(
r − �− �∗


1

) ;
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*̂∗T→∞→
M1

*∗a =
�∗(1− �)�

[
0
(
r − �− �∗


1

)
− 0

(
r − �

1

)]
[
�0
(
r − �

1

)
+ (1− �)0

(
r − �− �∗


1

)] [
1− �0

(
r − �

1

)
− (1− �)0

(
r − �− �∗


1

)] ;

where 0 is the cumulative distribution function of the standard normal.

Note that the pseudo-true value *∗a = 0 only if �∗ is also equal to zero.

Proposition 10. Suppose that the Structural Change model holds. Then
(i)

√
T (*̂∗ − *∗a) d→N(0; K3);

where K3 is given in Lemma A.3 of the appendix.
(ii) Under a local alternative H1T (�): �∗ = a=T 1=4; �∈ (0; 1), we have

WT (r);LMT (r);LRT (r)
d→92(1; :2);

where 92(1; :2) is a noncentral chi-square distribution with 1 degree of freedom and
noncentrality parameter:

:2 = a4
(1− �)2�2’2((r − �)=
1)


410((r − �)=
1)(1− 0((r − �)=
1))
:

This result is to be compared with what is obtained when testing for a structural
change instead of a threshold. The tests designed for a structural change alternative
have optimal power, that is, they detect alternatives of the type a=

√
T while the tests

designed for the threshold alternative have no power against alternatives a=
√
T . It is

due to the pseudo-true value that is not linear in �∗. Indeed, an equivalent of *∗a when
�∗ approaches zero is given by

*∗a(�
∗) ∼ −�∗2 (1− �)�’(r − �=
1)


10((r − �)=
1)(1− 0((r − �)=
1)) :

Therefore, *∗a converges to zero faster than �∗. It means that these tests will not have
power against small jumps. However, under a  xed alternative, these statistics diverge
to in nity in probability and the hypothesis H0 will be rejected with probability going
to 1. Note that from the point of view of the applied econometrician who is using a
misspeci ed TAR model, the speed of the sequence of local alternatives is the standard
one: *∗ = g=

√
T . Moreover, under the local alternatives the LR statistic has same limit

as the Wald and LM tests. It is due to the fact that the limiting distribution is aGected
by the variance under the null only and under the null the model is correctly speci ed.
However, the equivalence of the three tests does not hold under a  xed alternative.

3.2.2. The DGP is the Markov-switching model
As above, we test the parameter stability in Threshold model (6) with l = 0 when

in fact the data are generated by a two-state Markov-switching model (4) with l= 0.
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Proposition 11. Suppose that the Markov-switching model holds; the pseudo-true val-
ues are given by

*̂ P−→ *a = � + �∗'− (p+ q− 1)d
�∗(1− ')'

[
0
(
r − � − �∗


2

)
− 0

(
r − �

2

)]

1− (1− ')0
(
r − �

2

)
− '0

(
r − � − �∗


2

) ;

*̂∗ P−→ *∗a = (p + q− 1)d�∗(1− ')'
[
0
(
r − � − �∗


2

)
− 0

(
r − �

2

)]
[
(1− ')0

(
r − �

2

)
+ '0

(
r − � − �∗


2

)] [
1− (1− ')0

(
r − �

2

)
− '0

(
r − � − �∗


2

)] :

The pseudo-true values in Proposition 11 are very close to those of Proposition 9;
they depend in the same way of the probability to be in regime 1 (� and ', respec-
tively) and on the probability for an observation to be less than the threshold r. The
only diGerence is that here the pseudo-true values depend on d while, in the previ-
ous case, it does not. It is because the Markov chain {St} is autocorrelated while its
counterpart in the Structural Change model, that is I{t6T�}, is not. Again, *∗a con-
verges to zero faster than �∗ because the equivalent of *∗a as �∗ approaches zero is
given by

*∗a(�
∗) ∼ −�∗2 (p+ q− 1)d(1− ')'’((r − �)=
2)


20((r − �)=
2)(1− 0((r − �)=
2)) :

Proposition 12. Under a local alternative H1T ('): �∗ = b=T 1=4; '∈ (0; 1); we have

WT (r);LMT (r);LRT (r)
d→ 92(1; :2)

with

:2 = b4(p+ q− 1)2d
(1− ')2'2’2((r − �)=
2)


420((r − �)=
2)(1− 0((r − �)=
2))
:

The variance of
√
T *̂∗ under the true model is complicated and not presented in this

paper. Note that the estimator of the expectation of yt is

Ê(yt) = *̂+ *̂
∗ 1
T

T∑
t=1

I{yt−d6 r̂};

which coincides with Sy (see the score with respect to *). Hence as in the case of the
Structural Change, the Threshold model delivers a consistent estimator of the expecta-
tion whatever the true model is.
We can summarize the results of this subsection as following. Tests designed for

a threshold alternative have power against alternatives originating from a Structural
Change or Markov-switching. Therefore, to test the Threshold model can be used to
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establish whether there is parameter stability. However, these tests fail to detect local
alternatives as b=

√
T and will have a low power against small jumps. This result has

to hold for each r, hence it holds for the sup.

3.3. Test for an MSA

Assume one tests for parameter stability in Markov-switching model (4) when in fact
the data are generated either by an SCA or TAR. Consider  rst the case of an SCA.
This model is nested in the MSA with p = 1 and=or q = 1; therefore, the supLRMSA
is expected to have power against a structural change. However, when p = 1, p
is on the boundary of its space [0; 1] and we do not know what the properties of
the estimators are. Simulations show that the MSA captures correctly the single
jump, indeed P(St = 1|yt−1; : : : ; y1) goes from 0 to 1 at the right moment and the
estimators obtained by  tting the MSA are basically the same as those obtained
by  tting the SCA. Moreover, supLRMSA appears to have a very large power even
in small samples.
Now assume that the DGP is a TAR model. The properties of the estimators depend

crucially on how Hamilton’s algorithm behaves. To illustrate our point, suppose that
we  t an MSA with l= 0: The pseudo-MLE �̂ and �̂

∗
are solutions of the  rst-order

conditions given by Hamilton (1994, p. 692):
T∑
t=1

∑
st=0;1

{yt − �̂ − �̂∗st}P(St = st |yt−1; : : : ; y1) = 0;

T∑
t=1

{yt − �̂ − �̂∗}P(St = 1|yt−1; : : : ; y1) = 0:

We do not know what Hamilton’s algorithm will capture as St . If it “identi es” Xt =
I(yt−d6 r) as the Markov chain that drives the changes of regimes even though
Xt is not exogenous, then supLRMSA will have power. In the simulations, we see
that P(St = st |yt−1; : : : ; y1) identi es the right regime most of the times and that the
supLRMSA is powerful.

4. Empirical size and power

4.1. Methodology

The simulations displayed in Tables 1–4 intend to show how well the test performs
in practice. We consider only simple models with no autoregressive terms. Simulations
were performed using 2000 replications of small samples of size 100 and large sam-
ples of size 1000. The results are shown for tests at a 5% level. For each test, we
report the empirical power, that is the percentage of rejections, denoted P, and the
standard error of P calculated as (P(1−P)=rep)1=2, where rep is the number of replica-
tions. All computations were done using GAUSS software package and its random
number generators.
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Table 1
DGP: linear model

DGP � = 1, �∗ = 0, 
2 = 1
Sample size

T = 100 T = 1000 T = 2000

supWSCA 0.057 (0.005) 0.043 (0.004) 0.045 (0.006)
supLMSCA 0.022 (0.003) 0.040 (0.004) 0.044 (0.006)
supLRSCA 0.032 (0.004) 0.040 (0.004) 0.043 (0.006)

supLRMSA 0.023 (0.003) 0.022 (0.003) 0.022 (0.005)

supWTAR 0.066 (0.005) 0.053 (0.005) 0.061 (0.007)
supLMTAR 0.032 (0.004) 0.047 (0.005) 0.058 (0.007)
supLRTAR 0.040 (0.004) 0.047 (0.005) 0.060 (0.007)

Table 2
DGP: Structural Change model

DGP Nile River Vow Exchange rate
Sample size

� = 1151 � = 0:27 � = 2:29 � = 0:8
�∗ = 800 
21 = 12210 �∗ = 0:545 
21 = 0:087

T = 100 T = 1000 T = 100 T = 1000

�̂ 1151.03 (21.53) 1150.5 (6.58) 2.288 (0.032) 2.289 (0.011)
�̂∗ 800.04 (25.34) 799.99 (7.69) 0.552 (0.073) 0.545 (0.023)
�̂ 0.27 (0) 0.27 (0) 0.798 (0.017) 0.800 (0.001)

̂21 12002 (1753) 12111 (541) 0.085 (0.012) 0.087 (0.004)
predict. SCA 1 (0) 1 (0) 0.992 (0.015) 0.999 (0.001)
supWSCA 1 (0) 1 (0) 1 (0) 1 (0)
supLMSCA 1 (0) 1 (0) 1 (0) 1 (0)
supLRSCA 1 (0) 1 (0) 1 (0) 1 (0)

�̂ 1151.03 (21.53) 1150.5 (6.58) 2.280 (0.037) 2.283 (0.011)
�̂
∗

800.04 (25.34) 799.99 (7.69) 0.553 (0.080) 0.549 (0.029)
p̂ 0.95 (0.000) 0.95 (0.00) 0.940 (0.044) 0.949 (0.013)
q̂ 0.95 (0.000) 0.95 (0.00) 0.946 (0.037) 0.949 (0.013)

̂22 12002 (1753) 12112 (541) 0.082 (0.013) 0.084 (0.004)
predict. MSA 1 (0) 1 (0) 0.979 (0.054) 0.994 (0.019)
supLRMSA 1 (0) 1 (0) 0.991 (0.002) 0.999 (0.000)

*̂ 1950.90 (12.66) 1950.81 (4.25) 2.671 (0.109) 2.668 (0.046)
*̂∗ −772:81 (25.91) −796:95 (7.81) −0:359 (0.107) −0:339 (0.042)
r̂ 1370.74 (55.35) 1463.48 (41.39) 2.622 (0.144) 2.693 (0.066)

̂23 17942 (2698) 12849 (601) 0.111 (0.016) 0.116 (0.005)
predict. TAR 0.990 (0.001) 0.999 (0.000) 0.842 (0.091) 0.868 (0.019)
supWTAR 1 (0) 1 (0) 0.871 (0.007) 1 (0)
supLMTAR 1 (0) 1 (0) 0.758 (0.009) 1 (0)
supLRTAR 1 (0) 1 (0) 0.883 (0.007) 1 (0)
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Table 3
DGP: Markov-switching model

DGP Consumption NYSE share volume
Sample size

� = 0:0228 p = 0:5279 � =−7:3475 p = 0:05
�∗ =−0:0926 q = 0:9761 �∗ = 21:1089 q = 0:358


22 = 0:001 
22 = 150:3

T = 100 T = 1000 T = 100 T = 1000

�̂ 0.017 (0.013) 0.018 (0.004) 1.214 (3.567) 1.172 (1.191)
�̂∗ 0.000 (0.021) 0.000 (0.007) −0:006 (5.933) −0:013 (1.952)
�̂ 0.494 (0.238) 0.504 (0.240) 0.492 (0.236) 0.497 (0.237)

̂21 0.001 (0.000) 0.001 (0.000) 248.7 (32.84) 256.8 (10.37)
predict. SCA 0.565 (0.226) 0.537 (0.216) 0.518 (0.052) 0.507 (0.046)
supWSCA 0.149 (0.008) 0.157 (0.008) 0.022 (0.003) 0.006 (0.001)
supLMSCA 0.089 (0.006) 0.149 (0.008) 0.009 (0.002) 0.005 (0.001)
supLRSCA 0.138 (0.008) 0.161 (0.008) 0.012 (0.002) 0.007 (0.002)

�̂ 0.028 (0.011) 0.024 (0.001) −4:447 (4.395) −5:615 (3.509)
�̂
∗ −0:064 (0.035) −0:082 (0.016) 13.143 (10.12) 16.37 (8.633)
p̂ 0.493 (0.238) 0.454 (0.131) 0.215 (0.178) 0.132 (0.128)
q̂ 0.773 (0.263) 0.939 (0.070) 0.330 (0.170) 0.340 (0.079)

̂22 0.001 (0.000) 0.001 (0.000) 190.5 (64.57) 174.9 (48.27)
predict. MSA 0.807 (0.245) 0.969 (0.074) 0.824 (0.065) 0.856 (0.026)
supLRMSA 0.434 (0.011) 0.967 (0.004) 0.342 (0.011) 0.765 (0.009)

*̂ 0.021 (0.008) 0.021 (0.001) −4:860 (3.072) −3:775 (1.188)
*̂∗ −0:013 (0.020) −0:014 (0.006) 11.041 (3.130) 8.401 (1.001)
r̂ 0.007 (0.027) −0:011 (0.013) 2.590 (8.687) 4.384 (4.369)

̂23 0.001 (0.000) 0.001 (0.000) 227.3 (30.54) 240.8 (9.906)
predict. TAR 0.650 (0.230) 0.813 (0.10) 0.667 (0.064) 0.657 (0.028)
supWTAR 0.149 (0.008) 0.748 (0.010) 0.726 (0.010) 1 (0)
supLMTAR 0.082 (0.006) 0.738 (0.010) 0.611 (0.011) 1 (0)
supLRTAR 0.192 (0.009) 0.832 (0.008) 0.638 (0.011) 1 (0)

4.1.1. Implementation of the sup tests
For the SCA, the statistics are maximized over all possible change-points t from

0:15T to 0:85T , this corresponds to a choice of  = [0:15; 0:85] as advocated by
Andrews (1993). For the TAR, the statistics are maximized over the values of r ob-
tained by ranking the observations yt and discarding 15% of the largest and smallest
data. For the MSA, the likelihood is programmed using formulae [22.4.5]–[22.4.8] of
Hamilton’s book (1994). It is maximized by the DFP algorithm of the procedure Max-
lik of GAUSS over all parameters, where p and q are restricted to a subset (2.
Remark that for any symmetric subset of the form ( = [p; 1 − p], p∈( and q∈(
implies '∈(, hence ) = (. This result can be proved in the following way. Let
p¡p¡ 1− p, ' satis es the following inequality:

1− q
2− p− q ¡

1− q
2− p− q ¡

1− q
1 + p− q :
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Table 4
DGP: Threshold model

DGP Car CPI Unemployment
Sample size

* = 0:6133 r = 0:5828 * = 0:128 r = 0:20
*∗ =−0:3333 
23 = 0:1682 *∗ =−0:158 
23 = 0:03

T = 100 T = 1000 T = 100 T = 1000

�̂ 0.393 (0.153) 0.389 (0.052) 0.0342 (0.081) −0:033 (0.029)
�̂∗ 0.003 (0.245) 0.001 (0.084) 0.002 (0.132) −0:001 (0.050)
�̂ 0.490 (0.237) 0.497 (0.240) 0.487 (0.230) 0.505 (0.237)

̂21 0.179 (0.027) 0.191 (0.009) 0.031 (0.005) 0.035 (0.002)
predict. SCA 0.581 (0.100) 0.530 (0.084) 0.661 (0.105) 0.564 (0.050)
supWSCA 0.245 (0.010) 0.260 (0.010) 0.552 (0.011) 0.624 (0.011)
supLMSCA 0.152 (0.008) 0.248 (0.010) 0.417 (0.011) 0.613 (0.011)
supLRSCA 0.197 (0.009) 0.250 (0.010) 0.465 (0.011) 0.613 (0.011)

�̂ 0.743 (0.140) 0.741 (0.038) 0.140 (0.072) 0.157 (0.020)
�̂
∗ −0:603 (0.110) −0:564 (0.031) −0:198 (0.090) −0:211 (0.025)
p̂ 0.789 (0.151) 0.831 (0.029) 0.813 (0.188) 0.926 (0.048)
q̂ 0.723 (0.130) 0.721 (0.033) 0.800 (0.178) 0.893 (0.046)

̂22 0.112 (0.025) 0.118 (0.008) 0.025 (0.006) 0.025 (0.002)
predict. MSA 0.711 (0.099) 0.752 (0.019) 0.732 (0.116) 0.793 (0.027)
supLRMSA 0.430 (0.011) 1 (0) 0.545 (0.011) 0.988 (0.002)

*̂ 0.620 (0.086) 0.614 (0.024) 0.126 (0.037) 0.128 (0.009)
*̂∗ −0:350 (0.093) −0:335 (0.028) −0:157 (0.042) −0:158 (0.011)
r̂ 0.557 (0.128) 0.582 (0.010) 0.182 (0.096) 0.199 (0.008)

̂23 0.162 (0.024) 0.168 (0.007) 0.029 (0.004) 0.03 (0.001)
predict. TAR 0.941 (0.094) 0.995 (0.006) 0.889 (0.064) 0.904 (0.010)
supWTAR 0.858 (0.008) 1 (0) 0.914 (0.006) 1 (0)
supLMTAR 0.793 (0.009) 1 (0) 0.856 (0.008) 1 (0)
supLRTAR 0.839 (0.008) 1 (0) 0.902 (0.007) 1 (0)

The right-hand side of this inequality is a decreasing function of q and hence is max-
imized at q = p where it takes the value 1 − p. The left-hand side is a decreasing
function of q and reaches its minimum at q= 1− p where it equals p. We constrain
p and q to lie in the interval [0.05, 0.95] by using an arctan transformation. We use a
larger interval than the usual [0.15, 0.85] because the latter one turns out to be binding.
Since the labels of the states 0 and 1 are arbitrary, we call state 0, the state with mean
� and state 1 the state with mean �+ �∗ where the sign of �∗ is the same as that of
�∗; �∗, or *∗ in the true model. For Tables 2–4, we adopt as starting values p= 0:5,
q=0:5, �=2=3 Sy, �∗=2=3 Sy, which correspond to the case �=�∗ and P(St=1)=1=2,
and  nally 
22=

∑T
t=1(yt− Sy)2=T . Note that these starting values do not correspond to a

single state solution since �∗ 
=0 and is not a local maximum. To avoid local maxima
under H0 (Table 1), we investigate  ve sets of starting values and take the maximum
over these sets as suggested by Garcia (1998). This way, the LR statistic is greater
than −1e-4 with a 100% success rate. Since the three tests have the same asymptotic
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distribution under the null, we use the critical values given by Andrews (1993) for the
appropriate interval: 8.85 for [0.15.0.85] and 9.84 for [0.05, 0.95].

4.1.2. Predictability
The three models under consideration have in common to exhibit two states. Let

us call State 1 the state corresponding to the higher mean. It is interesting to inves-
tigate how well a model is able to predict State 1 conditionally on the observations
{y1; y2; : : : ; yT}. The state at date t is deterministic conditionally on �̂ for the SCA
and conditionally on r̂ and the observation at date t − 1 for the TAR. For the MSA,
we calculate P(St = 1|y1; y2; : : : ; yT ) using Kim’s algorithm (see Hamilton, 1994, Ap-
pendix 22.A). When P(St = 1|y1; y2; : : : ; yT )¿ 0:5, it is considered that the regime at
date t is 1, otherwise it is 0. This way, we get a T × 1 vector corresponding to the
inferred states at date t = 1; : : : ; T . This list can be compared with the true states. For
each model, we calculate the percentage of states that have been correctly predicted.
In the lines “predict” of Tables 2–4, we report the mean and standard error of these
percentages.

4.1.3. Empirical test size
To assess the properties of our tests under H0, we performed simulations (reported

in Table 1) on a linear model including just a Gaussian white noise plus an intercept.
The number of repetitions for the sample size T = 2000 is 1000. SupLRMSA seems to
underreject. 3 Other simulations (not reported here) show that the level does not seem
to be sensitive to the innovation variance.

4.2. Results for the Structural Change model

We illustrate the methods on two models. The  rst one is based on Nile River
Vow data. This time series has been studied extensively in the statistical literature.
We report below the parameter values found by MWuller (1992). He  tted a Structural
Change model on the annual volume of the Nile river from 1871 to 1970. In Table
2, we see that the sup tests against a Threshold alternative display a high power in
accordance with the results of Section 3.2. The simulations corroborate the fact that
SCA is a special case of MSA where one of the transition probability, p or q, is close
to 1. Indeed, the MSA picks up most values of p and q at the boundary 0.95 and
the associated test rejects almost all the time. SCA is also a special case of a TAR
with a large r. It is striking how well these models perform in terms of predictability
of the state (almost 100%) and in terms of estimation of the mean before and after
the jump. Compare �= 1151; �+ �∗ = 1950:5 with �̂= 1150:5; �̂+ �̂

∗
= 1950:5, and

*̂+ *̂∗ = 1153:4; *̂= 1950:5.
The second model is obtained by testing linearity on monthly data on Deutsche marks

per U.S. dollar from 1973-01 to 1986-01. 4 A break-point was found around June 1983.

3 On the other hand, Garcia (1998) found that the supLRMSA tends to overreject. This diGerence may be
due to the use of diGerent optimization algorithms in presence of multiple local maxima.

4 Source: International Financial Statistics.
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Interestingly, Hamilton (1996)  tted a Markov-switching model on similar data (for
a longer period) but could not exclude the possibility of a structural break. Here our
results speak in favor of a Structural Change. Indeed supLRMSA and supLRTAR reject
with a 100% success rate while data are generated by an SCA.

4.3. Results for the Markov-switching model

First, we consider as DGP the model found by Cecchetti et al. (1990) for consump-
tion data. They estimated an equilibrium model of asset pricing where the growth rate
of the endowment is assumed to follow a two-state Markov-switching model. They
used annual consumption data from 1889 to 1985. Results are reported in Table 3. As
expected, the sup tests with threshold alternative have a high power. And as expected
also, the sup tests for structural change have a low power but somewhat larger than
5% because p+ q¿ 1. The lack of power of supLRMSA may have two explanations.
First, its level might be lower than 5% (see Table 1). Second, the poor performance
might stem from the fact that Regime 2 is very persistent, so that regime 1 might
appear only rarely in the data. A really large sample would be necessary to exhibit
enough changes and to permit the distinction between MSA and a white noise. Note
that the TAR identi es relatively well the correct state (see line “predict. TAR”).
Second, we examined monthly data on NYSE reported share volume 5 from 1980-01

to 1995-09. We  tted a Markov-switching model on the  rst diGerence of the log of the
data in millions of dollars and used the resulting estimators as basis for our simulation
experiment. This series has been investigated by Hamilton and Susmel (1994). They
 t on weekly data an ARCH process where the coeJcients vary according to an
observed Markov chain. Since we do not take into account the presence of conditional
heteroscedasticity we obtain a large variance. As a result, supLRMSA lacks of power
in small sample. Because p+ q¡ 1, the power of supLRSCA is lower than its level.

4.4. Results for the Threshold model

The  rst set of values was obtained by  tting a Threshold model (with d=1) on the
growth rate in percentage of the consumer price index 6 for new cars where we replaced
three outliers by the sample mean. The data set included monthly data from 1975-01
to 1991-10. Koop and Potter (1999) have investigated the inVation on a longer period
(1947–1998) and they found evidence in favor of a structural change. We consider a
shorter series and our tests point toward a Threshold model. Simulations reported in
Table 4 suggest that supLRMSA will have power when the alternative is TAR although
this power might be low in small samples. It seems that Hamilton’s algorithm does a
relatively good job in identifying the changes originating from a TAR.
The second model is based on the growth rate of the U.S. Unemployment using

quarterly data from 1970 I to 2001 III. 7 Unemployment is extensively studied by

5 Source: Ramanathan (1998) and references therein.
6 Source: Citibase Data Series.
7 Source: www.economagic.com.

http://www.economagic.com
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Hansen (1997). He uses monthly U.S. unemployment, denoted xt , and  nds that the
diGerentiated series is better represented by a TAR with jumps driven by xt−1 − xt−d
with d=12: Using quarterly data, we  nd that  tting yt=xt−xt−1 on the intercept and
I(xt−1−xt−d6 r), the LR test is maximized for d=4. We adopt this model and report
the results in Table 4. This model does not exactly  t our setting. We do not actually
regress yt on I(yt−d6 r): However, the results are interesting. Since we estimate the
right Threshold model, we obtain an almost perfect  t. Because *∗¡ 0, the power of
the LRSCA is large.

5. Conclusion

This paper shows that testing only for a structural change might be very misleading
and might result in adopting a linear model while the data are generated by another
nonlinear model. On the other hand, the stability test based on a misspeci ed TAR
model can detect parameter instability originating from SCA or MSA models.
These results suggest that the Structural Change model is easy to distinguish from

the two other models. On the other hand, selecting between MSA and SCA seems to
be much more challenging. In a companion paper (Carrasco, 2002), we propose to use
a Wald Encompassing test (WET) developed by Gourieroux et al. (1983) and Mizon
and Richard (1986) to discriminate between these two models.
Our approach has some limitations. We consider only autoregressive models with

a given order. We allow only from a single break in the intercept and autoregressive
coeJcients but not in the innovation variance. Extensions to multiple breaks might raise
problems of identi ability since an SCA with multiple breaks might look very much
like an MSA or TAR. On the other hand, it should be relatively easy to accommodate
a shift in the innovation variance.
In this paper, we restrict our attention to three speci c models and assume that the

DGP is one of those (or linear). It would be interesting to look at other nonlinear
models like smooth threshold autoregressive models and bilinear models (Tong, 1990).
However, for the focus of the paper, it is better to consider three relatively close
alternatives. The more diGerent the models, the easier to discriminate.
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Appendix

Proof of Proposition 3. The Structural Change model can be rewritten as

yt = y′t�I{t6 [T�]}+ y′t?I{t ¿ [T�]}+ �t ;
where ?= �+ �∗. Testing H0: �∗ = 0 is equivalent to testing ?= �.
The mean log-likelihood is given by

QT =−ln(
√
2�)− ln(
1)− 1

2
21

1
T

T∑
t=1

{yt − y′t�I{t6 [T�]}+ y′t?I{t ¿ [T�]}}2:

The score functions are given by

9QT
9� =− 1


21

1
T

∑
t6[T�]

yt{yt − y′t�};

9QT
9? =− 1


21

1
T

∑
t¿[T�]

yt{yt − y′t?};

9QT
9
21

=− 1
2
21

+
1
2
41

1
T

T∑
t=1

{yt − y′t�I{t6 [T�]}+ y′t?I{t ¿ [T�]}}2:

From the  rst-order condition, 9=9�QT =0 ⇔ 1=T
∑
t6[T�] yt{yt − y′t�}=0, it follows

that

�̂(�) =


 1
T

∑
t6[T�]

yty′t



−1 
 1
T

∑
t6[T�]

ytyt


 :

From the condition 9=9?QT = 0, we get

?̂(�) =


 1
T

∑
t¿[T�]

yty′t



−1 
 1
T

∑
t¿[T�]

ytyt


 :

By the LLN and the stationarity of {yt}, we get

?̂(�)− �̂(�) P→ 0;

�̂(�) P→ �a = E[yty′t]
−1E[ytyt];


̂2(�) P→E[{yt − y′t�a}2];
where �a denotes the pseudo-true value of �. The restricted estimator of � can be
shown to converge also to �a in probability.
The score functions can be considered as moment conditions. Our moment conditions

are satis ed asymptotically for the values of parameters equal to the pseudo-true values.
We are exactly in the same setting as in Andrews (1993), where the GMM conditions
are exactly identi ed. To apply his results, we just need to check that Assumption 1
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(pp. 830–831) are satis ed. This assumption guarantees the Functional Central Limit
Theorem. We shall refer to mt as the moment conditions:

mt =




1

21a

{yt(yt − y′t�a)};

− 1
2
21a

+
1

2
41a
{yt − y′t�a}2:

Veri cation of Assumption 1 (Andrews, 1993):
Assumption 1(a) and 1(b): Near epoch dependence (NED) property.
By Assumption 5, the MSA process is geometrically �-mixing. On the other hand,

the TAR process is �-mixing under Assumption 4. Indeed, Chan and Tong (1985)
show that, under Assumption 4, a TAR is geometrically ergodic. This implies that the
process is geometrically �-mixing using results by Doukhan (1994). Note that �-mixing
implies strong mixing. Therefore, both processes TAR and MSA are stationary L2-NED
of arbitrarily large size on a strong mixing base (the process itself) of arbitrarily
large size. Finally, {mt} has the same NED property as {yt} itself since the sum
and product of NED processes are NED (see Gallant and White, 1988, Corollary
4.3). Assumption 1(b) imposes a moment condition E‖mt‖2+� ¡∞ for some �¿ 0
that is satis ed under Assumption 7. Therefore, conditions (a) and (b) of Andrews’
Assumption 1 are satis ed.
Assumption 1(c) is satis ed as soon as S is de nite positive.
Assumption 1(d) requires the veri cation of Assumption A by Andrews. It includes

among others an identi cation assumption, a condition on the weighting matrix (triv-
ially satis ed here since conditions are exactly identi ed) and a moment condition:
E sup�∈�0

‖mt‖1+� ¡∞ for some �¿ 0. This moment condition is satis ed as long as
�0 is compact and Assumption 7 is ful lled.
Assumption 1(e) does not apply since we are in an exactly identi ed case. Assump-

tion 1(f) includes a moment condition E sup�∈�0
‖9=9�mt‖1+� ¡∞ for some �¿ 0

which is satis ed under Assumption 7. Assumption 1(g) is immediate to verify. As-
sumption 1(h) is satis ed for  bounded away from zero and M nonsingular.
Andrews’ Assumption 1 being satis ed, his results can be applied. The limiting

distributions of LMT (�) and WT (�) follow immediately from Andrews’ Theorem 3.
However, Andrews consider only a speci cation robust version of the LR test. Our
LR test is not robust to misspeci cation. From Andrews’ proof of Theorem 3 (p. 850),
we get√

T �̂∗(�) =
√
T (?̂− �̂)(�)

⇒C
Bl+1(�)− �Bl+1(1)

�(1− �) ;

where C = (M ′S−1M)−1M ′S−1=2: From Foutz and Srivastava (1977) and references
therein, we know that the LR test is equivalent to

T �̂∗(�)′[AM (�a; �)−1A′]−1�̂∗(�);

where M (�a; �) is de ned in (7) and AM (�a; �)−1A′ =M−1=(�(1− �)). We have

LRT (�) ⇒ (Bl+1(�)− �Bl+1(1))′C′M−1C(Bl+1(�)− �Bl+1(1))=[�(1− �)];
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where M ≡ M (�a): Using the properties of the quadratic form of normal variables
(Johnson and Kotz, 1970), LRT (�) converges to a sum of chi-square processes weighted
by the eigenvalues of CC′M = (M ′S−1M)−1M =M−1S. Finally, the limiting distribu-
tion of supLR follows from the continuous mapping theorem. This concludes the proof
of Proposition 3.

The following lemma will be useful for the proofs of Propositions 4–12

Lemma A.1. Consider {St} a two-state Markov chain with transition probability
P(S1 = 1|St−1 = 1) = p and P(S1 = 0|St−1 = 0) = q. Then

E(St |St−l) = '[1− (p+ q− 1)l] + (p+ q− 1)lSt−l;

cov(St ; St−l) = (p+ q− 1)l'(1− ')
where '= (1− p)=(2− p− q).

This lemma follows from Cox and Miller (1965, p. 82).

Proof of Propositions 4 and 5. For �  xed the usual results apply; we have√
T (�̂− �a) d→N(0; �(�a; �)):

where �(�a; �) =M−1(�a; �)V (�a; �)M−1(�a; �). By Lemma A.5 of Andrews (1993);
the estimation of 
21 does not aGect the asymptotic distribution of (�̂; �̂∗)′. We can;
therefore; focus of the upper-left block of the matrices M and V . Using Eq. (7); we
obtain

√
T

(
�̂− �a
�̂∗

)
d→N

(
0; M−1SM−1

[
1 1− �

1− � 1− �
]−1
)
: (8)

We apply Proposition 3. Note that yt = 1; therefore we have M = 1=
21a and

S =
1

41a

lim
T→∞

1
T
V

(
T∑
t=1

yt

)

=
1

41a

lim
T→∞

{
1
T
�∗2 V

(
T∑
t=1

St

)
+

1
T
V

(
T∑
t=1

!t

)}
:

Using Lemma A.1; the variance of the numbers of periods spent in State 1 is asymp-
totically equal to '(1− ')(p+ q)=(2− p− q). We obtain

S =
1

41a

{
�∗2'(1− ') p+ q

2− p− q + 

2
2

}
:

The following lemma will be used in the proof of Propositions 6 and 7.

Lemma A.2. If {yt} is generated by Model (4) with l= 0; we have
∞∑
t=1

cov(y0; yt) =
*∗[E(yI{y6 r})− (*+ -*∗)-]

1− 0((r − *− *∗)=
3) + 0((r − *)=
3)
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with

E(yI{y6 r}) = -*+ -*∗0
(
r − *− *∗

3

)

−
[
-’
(
r − *− *∗

3

)
+ (1− -)’

(
r − *

3

)]

and

-=
0((r − *)=
3)

1− 0((r − *− *∗)=
3) + 0((r − *)=
3) ;

where ’ and 0 are; respectively; the p.d.f. and c.d.f. of N(0; 1).

Proof of Lemma A.2. We calculate the  rst term of the sum:

cov(yt; yt+d) = E(ytyt+d)− m2

= E[ytE(yt+d|yt)]− m2

= *m+ *∗E(yI{y6 r})− m2:

With a look on the p.d.f. of yt; we see that E(yI{y6 r}) is the weighted sum of two
truncated Gaussian density functions.

E(yI{y6 r}) = -
∫
y6r

1√
2� 
3

y exp− (y − *− *∗)2
2
23

dy + (1− -)
∫
y6r

1√
2� 
3

y exp− (y − *)2
2
23

dy

= -
[
(*+ *∗)0

(
r − *− *∗

3

)
− 
3’

(
r − *− *∗

3

)]

+(1− -)
[
*0
(
r − *

3

)
− ’

(
r − *

3

)]

= -*+ -*∗0
(
r − *− *∗

3

)

−
[
-’
(
r − *− *∗

3

)
+ (1− -)’

(
r − *

3

)]
:

Before computing the covariance; note that from Lemma 1; Xk = I{ykd6 r} is a
two-state Markov chain with transition probabilities

P[Xk = 1|Xk−1 = 1] = 0
(
r − *− *∗

3

)
;

P[Xk = 0|Xk−1 = 0] = 1− 0
(
r − *

3

)
:
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Therefore; Lemma A.1 applies and we have

E[Xk |X0] = -
{
1−
[
0
(
r − *− *∗

3

)
− 0

(
r − *

3

)]k}

+
[
0
(
r − *− *∗

3

)
− 0

(
r − *

3

)]k
X0:

Now we turn to the covariance:

cov(y0; y(k+1)d)

=E[y0E(y(k+1)d|y0)]− m2

=E{y0[*+ *∗E(Xk |X0)]} − m2

=*m+ *∗-m

{
1−
[
0
(
r − *− *∗

3

)
− 0

(
r − *

3

)]k}

+ *∗E(yI{y6 r})
[
0
(
r − *− *∗

3

)
− 0

(
r − *

3

)]k
− m2:

Remark that *m− m2 =−*∗m-. After simpli cation; we obtain

cov(y0; y(k+1)d) = *∗
[
0
(
r − *− *∗

3

)
− 0

(
r − *

3

)]k
[E(yI{y6 r})− m-] (9)

We deduce the result:

∞∑
t=1

cov(y0; yt) =
*∗[E(yI{y6 r})− m-]

1− 0((r − *− *∗)=
3) + 0((r − *)=
3) :

Proof of Propositions 6 and 7. The asymptotic distribution of (�̂; �̂∗)′ is given by Eq.
(8) given in the proof of Proposition 4. Again we apply Proposition 3. We have
M = 1=
21a and

S =
1

41a

lim
T→∞

1
T
V
[∑

yt
]
→ 1

41a


V (y0) + 2

∞∑
j=1

cov(y0; yj)


 :

By Lemma A.2; we obtain the desired result.

Proof of Proposition 8. The Threshold model can be rewritten as

yt = y′t *I{yt−d ¿ r}+ y′tCI{yt−d6 r}+ ut ;



266 M. Carrasco / Journal of Econometrics 109 (2002) 239–273

where C = * + *∗ and yt = (1; yt−1; : : : ; yt−l)′. The OLS estimates of * and C are
given by

(
*̂
Ĉ

)
=




[
T∑
t=1

yty′t I{yt−d ¿ r}
]−1 T∑

t=1

ytytI{yt−d ¿ r}[
T∑
t=1

yty′t I{yt−d6 r}
]−1 T∑

t=1

ytytI{yt−d6 r}


 :

Then the estimator of *∗ is given by Ĉ− *̂.

1. When the data are generated by a Structural Change model

*̂∗ =

[
1
T

T∑
t=1

yty′t I{yt−d6 r}
]−1

1
T

T∑
t=[T�]+1

yty′t I{yt−d6 r}�∗

−
[
1
T

T∑
t=1

yty′t I{yt−d ¿ r}
]−1

1
T

T∑
t=[T�]+1

yty′t I{yt−d ¿ r}�∗:

To obtain the limit, one should split the sum in two subsamples, before and after
the change point. Except for the case �∗ = 0, *̂∗ does not converge to zero.

2. When the data are generated by a Markov-switching model:

*̂∗ P→ [E(yty′t I{yt−d6 r})]−1E(yty′t I{yt−d6 r}St)�∗

− [E(yty′t I{yt−d ¿ r})]−1E(yty′t I{yt−d ¿ r}St)�∗:
The convergence is guaranteed by the stationarity of the MSA. This limit is in

general diGerent from zero. It will be equal to zero in two cases. First, when �∗ = 0,
this is H0. Second, when p+q=1, then P(St=1|St−1=0)=1−q=p=P(St=1|St−1=1);
that is to say {St} are independent, therefore yt and yt−d are independent of St . The
limit of *∗ is equal to zero. In all other cases, the pseudo-true value of *∗ should be
diGerent from zero. However, it will approach zero when d increases.
Since the pseudo-true value of *∗ is diGerent from zero, the statistics diverge.

Proof of Proposition 9. The objective function is given by

QT =
1
T

T∑
t=1

− 1
2
23

(yt − *− *∗I{yt−d6 r})2:

The minimization of QT yield:

*̂=
Sy − 1=T

∑T
t=1 ytI{yt−d6 r}

1− 1=T
∑T
t=1 I{yt−d6 r}

;

*̂∗ =
1=T

∑T
t=1 ytI{yt−d6 r} − Sy1=T

∑T
t=1 I{yt−d6 r}

1=T
∑T
t=1 I{yt−d6 r}(1− 1=T

∑T
t=1 I{yt−d6 r})

;

where Sy = 1=T
∑T
t=1 yt .
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We have

Sy P→ �+ �∗(1− �);

1
T

T∑
t=1

I{yt−d6 r}

=
T�+ d
T

1
T�+ d

∑
t6T�+d

I{�+ �t−d6 r}

+
T − T�− d− 1

T
1

T − T�− d− 1

∑
t¿T�+d

I{�+ �∗ + �t−d6 r}

P→�0
(
r − �

1

)
+ (1− �)0

(
r − �− �∗


1

)
(10)

and

1
T

T∑
t=1

ytI{yt−d6 r}

=
1
T

∑
t6T�

(�+ �t)I{�+ �t−d6 r}

+
1
T

∑
T�¡t6T�+d

(�+ �∗ + �t)I{�+ �t−d6 r}

+
1
T

∑
t¿T�+d

(�+ �∗ + �t)I{�+ �∗ + �t−d6 r}

P→��0
(
r − �

1

)
+ 0 + (1− �)(�+ �∗)0

(
r − �− �∗


1

)
by the LLN.

The following lemma is used in the proof of Proposition 10.

Lemma A.3. Assume one estimates Model (6); while the DGP is (2) with l = 0.
Denote g= (*; *∗)′ and MSC =−92QT =9g9g′. We have

MSC(�) =− 1

23




1 �0
(
r − �

1

)
+ (1− �)0

(
r − �− �∗


1

)

�0
(
r − �

1

)
+ (1− �)0

(
r − �− �∗


1

)
�0( r−�
1 ) + (1− �)0

(
r − �− �∗


1

)

 :

Denote VSC(�) = lim var[
√
T9QT =9g]. It is equal to V SC=
43a where the elements of

the matrix V SC are given by

V SC
11 = 
21 + *

∗2
a

[
�0
(
r − �

1

)(
1− 0

(
r − �

1

))
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+(1− �)0
(
r − �− �∗


1

)(
1− 0

(
r − �− �∗


1

))]

+2*∗a

[
�’
(
r − �

1

)
+ (1− �)’

(
r − �− �∗


1

)]
;

V SC
22 = 
2

[
�0
(
r − �

1

)
+ (1− �)0

(
r − �− �∗


1

)]

+(�− *a − *∗a)2�0
(
r − �

1

)(
1− 0

(
r − �

1

))

+(�+ �∗ − *a − *∗a)2(1− �)0
(
r − �− �∗


1

)(
1− 0

(
r − �− �∗


1

))

− 2

[
(�− *a − *∗a)�0

(
r − �

1

)
’
(
r − �

1

)

+(�+ �∗ − *a − *∗a)(1− �)0
(
r − �− �∗


1

)
’
(
r − �− �∗


1

)]
;

V SC
12 = 
2

[
�0
(
r − �

1

)
+ (1− �)0

(
r − �− �∗


1

)]

−

[
(�− *a − *∗a)�’

(
r − �

1

)
+(�+�∗−*a − *∗a)(1− �)’

(
r − �− �∗


1

)]

+*∗

[
�0
(
r − �

1

)
’
(
r − �

1

)
+(1− �)0

(
r − �− �∗


1

)
’
(
r − �− �∗


1

)]

− *∗
[
(�− *a − *∗a)�0

(
r − �

1

)(
1− 0

(
r − �

1

))

+ (�+ �∗ − *a − *∗a)(1− �)0
(
r − �− �∗


1

)(
1− 0

(
r − �− �∗


1

))]
;

and we have K3 = AM−1
SC (�a)VSC(�a)M

−1
SC (�a)A

′ where A= [0; 1].

Proof of Lemma A.3. We have

92QT
9*2 =− 1


23a
;

92QT
9*∗2 =− 1

T
23a

T∑
t=1

I{yt−d6 r};

92QT
9*9*∗ =− 1

T
23a

T∑
t=1

I{yt−d6 r}:
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The expression of MSC follows from Eq. (10). For the terms of VSC; we use

TV
(
9QT
9*

)
=

1

43a
TV

(
1
T

T∑
t=1

(yt − *∗a I{yt−d6 r})
)

1
T

T∑
t=1

(yt − *∗a I{yt−d6 r})

=
1
T

T�∑
t=1

(�+ �t − *∗a I{�+ �t−d6 r})

+
1
T

T�+d+1∑
t=T�+1

(�+ �∗ + �t − *∗a I{�+ �t−d6 r})

+
1
T

T∑
t=T�+d+1

(�+ �∗ + �t − *∗a I{�+ �∗ + �t−d6 r}):

Note that the second summand converges to zero when T approaches to in nity.
Moreover; the  rst and third terms are independent. The variance of the  rst term
is given by:

TV

(
1
T

T�∑
t=1

(�t − *∗a I{�t−d6 r − �})
)

=�V (�t − *∗a I{�t−d6 r − �})

+2
T�∑
t=1

cov(�t − *∗a I{�t−d6 r − �}; �1 − *∗a I{�1−d6 r − �}):

Remark that the covariance is equal to zero for all t 
=d+ 1. We have

TV

(
1
T

T�∑
t=1

(�t − *∗a I{�t−d6 r − �})
)

T→∞→ �
[

2 + *∗a0

(
r − �

1

)(
1− 0

(
r − �

1

))
+ 2*∗a
1�’

(
r − �

1

)]
:

The variance of the second term may be calculated by the same way; the result follows.
For the variance of the score with respect to *∗;

TV
(
9QT
9*∗

)
=
T

43a
V

(
1
T

T∑
t=1

I{yt−d6 r}(yt − *a − *∗a I{yt−d6 r})
)
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the result is obtained using the same steps as above.

T cov
(
9QT
9* ;

9QT
9*∗

)
=
T

43a

cov

(
1
T

T∑
t=1

(yt − *∗a I{yt−d6 r});

× 1
T

T∑
t=1

I{yt−d6 r}(yt − *a − *∗a I{yt−d6 r})
)

which is equal to

=
T

43a

cov

(
1
T

T�∑
t=1

(�t − *∗a I{�t−d6 r − �});

× 1
T

T�∑
t=1

I{�t−d6 r − �}(�t + �− *a − *∗a I{�t−d6 r − �})
)

+
T

43a

cov

(
1
T

T∑
t=T�+d+1

(�t − *∗a I{�t−d6 r − �− �∗});

× 1
T

T∑
t=T�+d+1

I{�t−d6 r−�−�∗}(�t + �+ �∗−*a−*∗a I{�t−d6 r−�−�∗})
)

plus a term which converges to zero when T approaches in nity.

Proof of Proposition 10. (i) follows directly from Lemma A.3. As in the estimation
of an AR model; the limiting distribution of (*̂; *̂∗) is not aGected by that of 
̂23; we
can proceed as if 
23 were known a priori. Therefore; the expression of the variance of√
T *̂∗ is given by K3 that does not depend on 
23a:
(ii) Again, we can proceed as if 
23 were known. Here, it is important to distinguish

between gTa and ga: We denote gTa=(*Ta; *∗Ta) the pseudo-true value given by Lemma
9 where �∗ is replaced by a=T 1=4. Its limit as T approaches in nity is denoted ga and
equals (�; 0)′. Note that, because the null hypothesis holds at the limit, 
23a = 


2
1. We

denote �a = (�; 0; 
21)
′. Using Taylor expansions (around the pseudo-true value �a) as

in Gourieroux and Monfort (1989, p. 100), we obtain

LRT ∼ T *̂∗′[AM−1
T (�a; r)A′]−1*̂∗; (11)

where A= [0; 1]: Moreover, from Lemma A.3, we have

MT (�a; r)
P→ 1

21

[
1 -0
-0 -0

]
;

where -0=0(r−�=
1). Using Lemma A.3 and *a=�; *∗a=0, we have V (�a; r)=M (�a; r).
Moreover,

√
T (*̂∗ − *∗Ta) d→N(0; A�(�a; r)A′) (12)
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with �(�a; r)=M−1(�a; r) and hence A�(�a)A′=
23a=(-0(1−-0)). A Taylor expansion
of 0(r − �− �∗=
1) around �∗ = 0 yields the following result:

0
(
r − �− �∗


1

)
− 0

(
r − �

1

)
=−�

∗


1
’
(
r − �

1

)
:

Therefore,
√
T*∗Ta

T→∞→ *̃ ≡ −a2 (1− �)�’((r − �)=
1)

1-0(1− -0) :

From (11) and (12), we deduce that

LRT
d→ 92(1; *̃2(A�(�a; r)A′)−1):

The limiting distributions of WT and LMT can be derived in the same manner.

Proof of Proposition 11.

QT =
1
T

T∑
t=1

− 1
2
23

(yt − *− *∗I{yt−d6 r})2:

By stationarity and ergodicity of {yt}; we have

QT
T→∞→ Q∞ =− 1

2
23a
E[(yt − *− *∗I{yt−d6 r})2]:

*a and *∗a are the results of the maximization of Q∞ with respect to * and *∗. We
obtain

*a =
E(yt)− E(ytI{yt−d6 r})

1− E(I{yt−d6 r}) ;

*∗a =
E(ytI{yt−d6 r})− E(yt)E(I{yt−d6 r})
E(I{yt−d6 r})(1− E(I{yt−d6 r})) :

We will compute now the diGerent terms of these equations. We obtain immediately

E(yt) = � + �∗';

E(I{yt−d6 r}) = (1− ')0
(
r − �

2

)
+ '0

(
r − � − �∗


2

)
;

E(ytI{yt−d6 r}) = E[I{yt−d6 r}E(yt |yt−d6 r)]:
Firstly; we calculate E(yt |yt−d6 r):

E(yt |yt−d6 r) = � + �∗E(St |yt−d6 r)
= � + �∗E[E(St | St−d)|yt−d6 r]:

Replacing E(St | St−d) by its expression given by Lemma A.1; we obtain

E(St |yt−d6 r) = '[1− (p+ q− 1)d] + (p+ q− 1)dE(St−d|yt−d6 r):
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Using the Bayes Formula; we establish that

P(St = 1|yt6 r) = P(yt6 r|St = 1)P(St = 1)
P(yt6 r)

=
'0((r − � − �∗)=
2)

(1− ')0((r − �)=
2) + '0((r − � − �∗)=
2) :

We deduce that

E(ytI{yt−d6 r}) = E(I{yt6 r})[� + �∗'(1− (p+ q− 1)d)]

+�∗(p+ q− 1)d'0
(
r − � − �1




)
:

By replacing in the expression of *a and *∗a ; we obtain the result.

Proof of Proposition 12. It is enough to note that as T approaches in nity; the pseudo-
true value converges to �a ≡ (�; 0; 
22)

′ because 
23a = 

2
2 under H0. Since at the limit

we are under H0; �(�a; r) =M−1(�a; r) with

M (�a; r) =− 1

22

[
1 -1
-1 -1

]

and -1 = P(� + �t−d6 r) = 0((r − �)=
2a). The rest of the proof is similar to that of
Proposition 10.
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